A characterization of multiplicative linear functionals in complex Banach algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost multiplicative linear functionals and approximate spectrum

We define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital Banach algebra A and show that the δ-approximate spectrum σ_δ (a) of a is compact. The relation between the δ-approximate spectrum and the usual spectrum is investigated. Also an analogue of the classical Gleason-Kahane-Zelazko theorem is established: For each ε>0, there is δ>0 such that if ϕ is...

متن کامل

amenability of banach algebras

chapters 1 and 2 establish the basic theory of amenability of topological groups and amenability of banach algebras. also we prove that. if g is a topological group, then r (wluc (g)) (resp. r (luc (g))) if and only if there exists a mean m on wluc (g) (resp. luc (g)) such that for every wluc (g) (resp. every luc (g)) and every element d of a dense subset d od g, m (r)m (f) holds. chapter 3 inv...

15 صفحه اول

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

almost multiplicative linear functionals and approximate spectrum

we define a new type of spectrum, called δ-approximate spectrum, of an element a in a complex unital banach algebra a and show that the δ-approximate spectrum σ_δ (a) of a is compact. the relation between the δ-approximate spectrum and the usual spectrum is investigated. also an analogue of the classical gleason-kahane-zelazko theorem is established: for each ε>0, there is δ>0 such that if ϕ is...

متن کامل

A Remark on Continuity of Positive Linear Functionals on Separable Banach *-Algebras

Using a variation of the Murphy-Varopoulos Theorem, we give a new proof of the following R. J. Loy Theorem: Let A be a separable Banach ∗-algebra with center Z such that ZA has at most countable codimension, then every positive linear functional on A is continuous.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1968

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-30-1-83-85